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Recently, the collisionless expansion of spherical nanoplasmas has been analyzed with a new ergodic model,
clarifying the transition from hydrodynamiclike to Coulomb-explosion regimes, and providing accurate laws
for the relevant features of the phenomenon. A complete derivation of the model is presented here. The
important issue of the self-consistent initial conditions is addressed by analyzing the initial charging transient
due to the electron expansion, in the approximation of immobile ions. A comparison among different kinetic
models for the expansion is presented, showing that the ergodic model provides a simplified description, which
retains the essential information on the electron distribution, in particular, the energy spectrum. Results are
presented for a wide range of initial conditions �determined from a single dimensionless parameter�, in excel-
lent agreement with calculations from the exact Vlasov-Poisson theory, thus providing a complete and detailed
characterization of all the stages of the expansion.
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I. INTRODUCTION

The irradiation of solid targets with ultraintense lasers can
induce the prompt formation of hot dense plasmas, which
rapidly expand into a vacuum, as predicted by Dawson in
1964 �1�. In the case of planar targets �employed for ion
acceleration �2��, the physics of the expansion has been ex-
tensively studied under a variety of conditions, using differ-
ent analytical and numerical approaches �3–7�. In contrast,
the expansion of spherical plasmas �such as the nm- to
�m-sized plasmas generated upon interaction of ultraintense
lasers with atomic or molecular clusters �cf. �8–12��� have
not been analyzed as thoroughly. A deep knowledge of the
expansion �accounting for the self-consistent dynamics of
ions and electrons� can be relevant in particular situations
where accurate control over the expansion is necessary, ex-
amples being the double-pump irradiation of deuterium clus-
ters aimed at tailoring the ion dynamics so as to induce in-
tracluster fusion reactions �13�, or the biomolecular imaging
with ultrashort x-ray pulses �14�, where expansion control is
needed to avoid significant damages of the sample before the
typical imaging time. In fact, accurate solutions for spherical
expansions exist only for ideal cases, such as the Coulomb
explosion �CE� �15� of a pure ion plasma, which occurs
when all the electrons are suddenly swept away from the
cluster by the laser field. In opposite conditions, when most
of the electrons are heated by the laser but not stripped from
the cluster, hydrodynamic models can be employed �16� to
estimate the basic features of the expansion; in the quasineu-
tral limit, a kinetic solution for the adiabatic expansion of
plasma bunches into a vacuum has also been derived �17�.
However, in more general situations �for example, in experi-
ments with large clusters, containing millions of atoms�, a
significant violation of charge neutrality occurs, even though
a relevant fraction of the electrons remains bound to the clus-
ter. In such conditions �corresponding to plasma radii on the

order of the electron Debye length, or less�, the expansion
process is strongly dependent on the self-consistent dynam-
ics of ions and trapped electrons and it can be described
accurately only by kinetic models, based on the Vlasov-
Poisson �VP� theory. A remarkable example of numerical
solution of the VP equations for the expansion problem in a
spherical geometry can be found in Ref. �7�, for the particu-
lar case in which the motion of both ions and electrons is
purely radial.

Recently, the authors presented a kinetic analysis of the
collisionless expansion of spherical plasmas driven by hot
electrons, based on a peculiar ergodic model, which accounts
for the radial motion of the ions and for the three-
dimensional motion of nonrelativistic electrons �18�. In the
present paper, the model is derived in detail, and its validity
is tested against reference solutions of the full VP equations
�here obtained using ad-hoc numerical techniques�. Further-
more, a procedure to determine the self-consistent initial
conditions for the expansion within the framework of the
model is presented. As an accurate knowledge of the initial
space-charge distribution is fundamental to describe cor-
rectly the long-term plasma expansion, the initial charging
transient, during which the faster electrons leave the cluster
core, is analyzed resorting to different models, thus provid-
ing deeper physical insights and validating the technique.

The results presented here provide a complete character-
ization of the expansion dynamics of spherical nanoplasmas,
which can be useful in the interpretation of recent experi-
ments with clusters, either irradiated with intense IR lasers or
with VUV/x-ray sources �14�, where conditions may be far
from those of a pure CE �10�. In particular, the different
behavior observed in the ion energy spectrum for different
values of the electron temperature allows a clear identifica-
tion of the transition from hydrodynamiclike to CE expan-
sion regimes, thus defining the range of validity of the CE
approximation.
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II. KINETIC MODELS FOR THE EXPANSION

In the electrostatic, nonrelativistic limit, the dynamics of a
collisionless ion-electron plasma is described rigorously by
the Vlasov-Poisson �VP� set of equations,
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where fe�r ,v , t� and f i�r ,v , t� are the distribution functions in
phase space for electrons �having mass m and charge −e� and
ions �having mass M and charge Ze�, respectively, and
��r , t� is the electrostatic potential �� is set to zero at infin-
ity, so that the energy of a single electron, �= 1

2mv2−e�, is
negative if it is trapped�. In the following, the attention is
focused on the expansion of a plasma sphere �with initial
radius R0� composed of cold ions �with initial uniform den-
sity ni0� and hot electrons �with initial uniform density ne0
=Zni0 and arbitrary energy distribution �e����. The general
initial conditions for Eqs. �1� can be cast in the form

fe0�r,v� = ne0g�v���1 −
r

R0
� ,

f i0�r,v� = ni0��v���1 −
r

R0
� , �2�

where � is the Heaviside step function and g is an arbitrary
function of v, such that �e���=16�2ne0R0

3 /
3�2� /m3�1/2g��2� /m�1/2�. In the present paper, for simplicity,
only the ideal situation �commonly adopted in the literature
�3–7�� of an initially neutral plasma with Maxwellian elec-
trons is considered, in which all the information on the elec-
tron heating by the laser pulse is contained in the initial
electron temperature, T0. The function g in Eq. �2� is then
defined as g�v�= �m / �2�kBT0��3/2 exp�−mv2 / �2kBT0��. As
can be readily proved by writing Eqs. �1� and �2� in nondi-
mensional form, in this case the dynamics of the system is
fully determined by the dimensionless parameters Zm /M and

T̂0=ZkBT0 /�CE=3	D0
2 /R0

2, being 	D0 the initial Debye length
for the electrons, and �CE= 4�

3 e2R0
2ni0

2 the maximum ion en-
ergy attainable in the case of pure CE for a sphere of ions.
With the use of the initial conditions �2� the electrons are
supposed to be instantaneously heated by an infinitely short
laser pulse, without expanding. However, in principle, any
initial space-energy density for the electrons could be em-
ployed �for example, linear superpositions of Maxwellian
distributions, as well as initially non-neutral distributions�, as
resulting from a realistic model of laser-matter interaction.
Nonetheless, the use of the reference initial conditions �2�
provides a simple way to obtain useful physical insights on
the influence of the combined effects of variations of elec-
tron energy and cluster features.

The expansion process is split in two stages: first, a rapid
expansion of the electrons, which leads to a VP equilibrium
before the ions move appreciably; second, a slow expansion
of the plasma bulk, driven by the positive charge buildup
formed in the first stage. Due to the large mass disparity
between ions and electrons, a simplified model can be de-
rived, in which the ions are assumed as immobile during the
former process, whereas the electrons can be considered as
instantaneously at equilibrium with the electrostatic potential
during the latter stage. A self-consistent theoretical frame-
work can be developed, which allows one to determine ac-
curately both the initial equilibrium and the bulk expansion,
by treating the electron dynamics as a sequence of equilib-
rium configurations �with frozen ions�. The model is ob-
tained by exploiting the functional relation existing between
ne and � at equilibrium, and by calculating the energy varia-
tion of the electrons under the hypothesis of slow variations
of � in time.

Equilibrium solutions of the Vlasov equation for the elec-
trons must depend on r and v only through the invariants of
motion. Since a spherical symmetry has been assumed and
the electrostatic force is central, the only invariants of mo-
tion to be considered are the Hamiltonian H�r ,v�=mv2 /2
−e��r� and the angular momentum, L=mr
v. Conse-
quently, the equilibrium distribution function can be written
as fe�r ,v�=F�H�r ,v� ,mr
v�. If a generic space point r
=rêr and a generic velocity v=vrêr+v�ê� are considered,
the phase-space density is given by F� m

2 �vr
2+v�

2 �
−e��r� ,L , êr
 ê�� being L=mrv� the absolute value of L.
Due to the spherical symmetry of the system �and, in particu-
lar, the symmetry with respect to any rotation with respect to
êr�, the phase-space density cannot depend upon ê�, and,
consequently, F depends only on H and L.

The energy-angular momentum distribution, �e�� ,��, can
be defined as

�e��,�� =� � F�H�r,v�,L�r,v����H�r,v� − ��


��L�r,v� − ��drdv

=
8�2�2
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dr ,

�3�

where R1�� ,�� and R2�� ,�� �R1�R2� are the radial turning
points, i.e., the values of r such that �− �2

2mr2 +e��r�=0. The
quantity �e�� ,���� represents the number of electrons
having energy in �� ,�+�� and absolute value of the angular
momentum in �� ,�+��. The electron density, ne, can be
written as

ne�r� =
1

4�r2 � � �e��,��P�r,�,�;	�
�d�d� , �4�

where
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is such that P�r ;� ,��r gives the probability, for an electron
with energy � and angular momentum �, to be found in
�r ,r+r�. If time variations of �, due to the ion motion, are
slow with respect to the period of the radial oscillation of the
electrons, the mean value of d� /dt can be evaluated as
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i.e., by using the ensemble average of �� /�t. This is equiva-
lent to preserve the value of the adiabatic invariant �19�,

I„��t�,�,t… =  prdr

= const 
 �
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�2

2mr2 + e��r,t��1/2

dr .

�7�

Equations �3�–�6�, coupled with Poisson’s equation and
Newton’s equation for the radial motion of the cold ions,
provide a self-consistent model for the collisionless expan-
sion of a finite-size plasma in the case of spherical symmetry.

In kinetic theory, there is a precise relationship between
time scales and the proper number of parameters to be used
to describe correctly a given phenomenon: in the case of the
plasma expansion, the VP system �1� for fe and f i allows one
to follow precisely the expansion dynamics on the time scale
of the fastest particles; to study the ion expansion, a quasi-
equilibrium model, Eqs. �3�–�6�, can be used, in which the
stationary solution of the Vlasov equation for the electrons is
employed. In fact, as the Vlasov model is noncollisional, it
does not contain a physical mechanism leading towards the
equilibrium �the equations are time reversible�. To justify the
use of the equilibrium distribution f�r ,v�
= f�H�r ,v� ,L�r ,v��, one must suppose that the stationary
solution of the Vlasov equation is a good representation of
the real electron distribution, once high-frequency fluctua-
tions are eliminated; formally, this can be performed by in-
troducing a dissipation mechanism �i.e., a suitable collision
term into the Vlasov equation�. In general, an approximate
kinetic model can be regarded as the result of introducing a
particular collision term. For example, by using a binary col-
lision term with sufficiently high collision frequency, fe tends
towards the Maxwell-Boltzmann distribution �i.e., f�r ,v�
=const
exp(−H�r ,v� /kBT)�, in which all the information is
restricted to the temperature; in this case, a hydrodynamic
description is obtained, whose domain of validity is confined

to situations where T̂0�1. For larger values of T̂0, the use of

a proper energy spectrum is fundamental; in fact, the energy
distribution presents a cutoff for �=0 �for ��0 the electrons
are not confined and their stationary density must vanish�
and this fact is hardly compatible with a Maxwellian distri-
bution having a non-negligible fraction of electrons with �
�0.

Within this framework, the approach of Ref. �18� can be
introduced by considering a collision term of the form

J�fe� = − ��fe − f̄ e�, f̄ e =
1

4�
 fe�r,v�̂,t�d�̂ , �8�

where �̂ is a unit vector and � represents the collision fre-
quency; the specific value of � is irrelevant, as long as 1/� is
much smaller than the characteristic time of the ion expan-
sion. In this case, the kinetic Vlasov equation for the elec-
trons is replaced by the collisional equation
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where � is the collision frequency and �̂ is a unit vector. The
collisions do not alter the electron energy, but change ran-
domly their direction, driving fe towards an equilibrium dis-
tribution having the form fe�r ,v�= f�H�r ,v��, a sort of er-
godic density such that each electron has an equal probability
to be found in every point of the hypersurface of phase-space
having equation H�r ,v�=�. This is different from the usual
ergodic distribution of the statistical mechanics, in which the
state of a system of N particles can be found with equal
probability on the hypersurface H�r1 ,r2 , . . . ,rN ;
v1 ,v2 , . . . ,vN�=const of the complete, 6N-dimensional phase
space. In fact, the time derivative of the electron entropy
Se=−��fe ln�fe�drdv can be written in the form

dSe

dt
= �� � ln� fe

f̄ e
��fe − f̄ e�drdv , �10�

which is always non-negative unless fe= f̄ e. Therefore, a nec-
essary condition for the distribution to be stationary is that fe

must not depend on �̂. Finally, the equilibrium distribution

is a function of H and L that does not depend on �̂, and,
consequently, it is a function of H only.

In the following, the approach will be referred to as
single-particle ergodic �SPE� method. According to this ap-
proach, the equilibrium distribution function can be written
simply as fe�r ,v�= f�H�r ,v��, the dependence on L being
lost, and Eqs. �3�–�5� are replaced by

�e��� =� � f�H�r,v����H�r,v� − ��drdv

=
16�2�2

m3/2 f����
D���

�� + e��r��1/2r2dr , �11�

ne�r� =
1

4�r2 � �e���Q�r,�;	�
�d� , �12�
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� =
r2�� + e��r��1/2

�
D���

r�2�� + e��r���1/2dr�

, �13�

where D��� is the integration domain, such that r
�D���⇒�+e��r��0 	for monotonic potentials, D���
= �0,R����, where �+e��R����=0
, and the adiabatic invari-
ant, Eq. �7�, is replaced by the ergodic invariant �20�

J���t�,t� = const 
 �
D���

�� + e��r,t��3/2r2dr , �14�

defined as the volume of the region of R6 enclosed by the
hypersurface of equation 1

2mv2−e��r�=�.
As shown in Ref. �18�, the SPE approach provides excel-

lent results for the expansion of a spherical plasma in a wide

range of the parameter T̂0. There is a number of reasons to
explain its success, even though it is not easy to quantify
their relative importance. First, even though hydrodynamic
models can provide a qualitative agreement with the real
expansion dynamics, the SPE model is extremely more flex-
ible in describing the energy distribution of the electrons. In
addition, in the cases considered here, the initial phase-space
distribution, Eq. �2�, is assumed to be an SPE function.
Moreover, it must be noticed that the angular momentum is
invariant only in the case of perfect spherical symmetry. In
practical situations, perturbations to that symmetry �e.g., an
initial shape which is not perfectly spherical, or collisions
with heavy particles� would cause a mixing in L distribution,
and their effect could be taken into account by introducing a
collision term such as the one in Eq. �8�.

III. SINGLE-PARTICLE ERGODIC MODEL

Under the hypothesis of SPE distribution, a self-consistent
model for the expansion of a spherical plasma can be formu-
lated, starting from Eqs. �11�–�14�, as follows �18�. A La-
grangian approach can be used both for the ions �which
move in radial direction, starting from the initial position r0,
with zero velocity� and for the electrons �whose energy �
evolves in time starting from the initial value �0�, by deter-
mining the ions trajectories ri�r0 , t�, the electron energies
���0 , t�, the ion density ni�r , t�, the electron density ne�r , t�,
the electron energy distributions �e�� , t�, and the potential
��r , t� according to the set of equations

M
�2ri
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��

�r
�ri� ,

1

r2

�
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�r2��
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,

d

dt
J„���0,t�,t… = 0, �15�

where the evolution equations for the radial coordinates of
the ions and the electron energies are coupled via Poisson’s
equation. The expansion dynamics are determined once the
initial ion density ni,0 and the electron energy distribution
�e,0 are given. In Eqs. �15�, the electron density ne is ex-
pressed as the sum of the number of electrons having energy
in �� ,�+d�� �i.e., �e���d�=�e,0��0�d�0�, multiplied by the
probability for an electron with energy � to be found at the
radius r, according to the ergodic distribution. For simplicity,
the ion density ni is written under the hypothesis of no ion
overtaking ��ri /�r0�0� �21�; however, the model can be eas-
ily generalized to include many-branched shock shells
�13,15,21,22� and different ion species.

The set of equations �15� describes the expansion dynam-
ics on the ion time scale; therefore, its numerical solution is
much faster than solutions of the full VP model �where the
electron time scale must be followed�. The model is solved
by calculating the radial trajectories of a set of representative
ions and the energy variations of a set of computational par-
ticles. Each computational particle represents a given num-
ber of electrons, whose radial distribution is given by Eq.
�13�. This description of the energy dependence corresponds
to a suitable discretization of the integral in Eq. �12� �which
is similar to the description of the spatial dependence com-
monly adopted in the particle-in-cell approach �23��.

IV. CHARGING TRANSIENT

Since the initial configuration considered here �cf. Eqs.
�2�� is far from equilibrium, the proper �e,0, to be used in
Eqs. �15�, must be determined as the equilibrium configura-
tion following the initial charging transient. Apparently, the
SPE method cannot be of help for this purpose, since it is
valid only for sufficiently smooth variations of � in time, a
condition which is not met in the early stage, when the hot
electrons are suddenly allowed to expand �as if a rigid wall,
initially confining them, were instantaneously brought to in-
finity�. However, a procedure has been envisaged, which
makes these equations suitable also for the analysis of the
initial electron equilibrium, thus allowing the study of the
whole expansion process �initial charging transient and bulk
expansion� within the same theoretical framework. Before
describing this procedure, the initial equilibrium is analyzed
in detail, accounting for the full electron dynamics �VP
model�.

A. Reference solutions of the collisionless and collisional
models

Due to the importance of an accurate knowledge of the
initial equilibrium configuration of the electrons for a correct
analysis of the plasma expansion, reference results for the
transient leading to the initial space-charge distribution of the
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plasma has been determined by solving Eqs. �1� numerically,
in the hypothesis of immobile ions. In the numerical scheme
adopted, computational particles representative of a given
number of electrons are moved in space, under the action of
the sum of the self-consistent electric field and the electric
field due to the ion distribution. By resorting to the spherical
symmetry of the system, the field generated by the electrons
is evaluated using Gauss’ law, as if each particle were actu-
ally a spherical shell, thus avoiding the use of a computa-
tional grid for solving Poisson’s equation, and allowing for
an infinite radial domain �similar techniques have been used
to investigate the VP dynamics of one-dimensional plasmas
�24�; here, the validity of the method has been checked
through comparisons with reference results from the three-
dimensional �3D� particle-in-cell code OSIRIS �25��. The
same framework has been used also to investigate numeri-
cally the effect of the presence of the collision term, Eq. �9�,
which forces the system towards a SPE distribution. Such
perturbations are introduced in the model by scattering ran-
domly the computational particles, without changing their
energy, according to the collision frequency �.

Figure 1 shows the evolution of the electronic charge con-
tained within the ion sphere, for the representative low-

temperature �T̂0=7.2
10−3� and high-temperature �T̂0=7.2

10−2� cases of Ref. �18�, as obtained with the pure VP
model ��=0� and with the collisional model, Eq. �9� �using
�=�pe�. In the collisionless case, the charge transient exhib-

its small-amplitude oscillations �the simulation parameters
have been carefully checked to ensure that the oscillations
are not due to numerical noise�. In the collisional model, for
���pe, the oscillations are strongly damped and the system
rapidly reaches an equilibrium configuration, as predicted
theoretically.

B. Method of the barrier

In order to build a self-consistent ergodic model for the
whole expansion process �thus avoiding the use of different
models to deal with the initial stage�, a procedure has been
devised to determine the equilibrium distribution that follows
the initial electron expansion, using the same theoretical
framework of Eqs. �11�–�14�. To this purpose, the charging
transient described by the full VP model is replaced by a
virtual charging transient, in which an external potential bar-
rier, initially confining the electrons, is gradually moved
from Rb=R0 to infinity with a series of small radial displace-
ments. Each time the barrier is moved farther by �Rb, the
new self-consistent potential � is calculated and the energy
of the electrons is updated. In order to actually simulate an
expansion into vacuum �which the real transient is�, the elec-
trons and the expanding barrier must not exchange energy,
i.e., the electron energy must vary only because of � varia-
tions. This implies that the ergodic invariant �14� is not con-
served during the initial stage. In fact, should one conserve J
when displacing the barrier from a given radius Rb to Rb
+�Rb, the corresponding electron energy variation, ��, would
be

�� = − e�
0

Rb

��Q�r,�;	�
�dr − �W , �16�

where �W, defined as

�W = 2
3 �� + e��Rb��Q�Rb;���Rb �17�

represents the expansion work, done by an electron having
energy �, against the expanding barrier. Thus, conserving J
would cause the overestimation of the electron cooling as the
system would lose an extra amount of energy corresponding
to the expansion work. In order to obtain an energy balance
equivalent to that of a vacuum expansion, the energy loss
associated to the expansion work is set to zero in Eq. �16�.

The physical process simulated with the barrier method
can be thought of as an infinitely slow expansion during
which some external energy source exactly compensates for
the expansion work �W against the barrier, or, alternatively,
as a series of instantaneous, small, displacements of the bar-
rier, where, after each displacement, one waits for a new
equilibrium configuration to establish.

C. Drift-diffusion approximation

As an alternative to solving Eq. �9�, one can consider the
drift-diffusion equation
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FIG. 1. Evolution of the electronic charge contained within the

ion sphere �r�R0� for �a� T̂0=7.2
10−3 and �b� T̂0=7.2
10−2.
Thick gray lines refer to the collisionless case, thick black lines
refer to the collisional case ����pe�. Thin horizontal lines indicate
the results obtained using the barrier method described in Sec.
IV B. Units are normalized to the quantities indicated in
parentheses.
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obtained from Eq. �9� by approximating fe as f0�r ,v�
+v · f1�r ,v� �26�. In Eq. �18�, the quantity ��r ,� , t� repre-
sents the space-energy distribution of the electrons �i.e.,
��r ,� , t�� is the particle density for electrons with energy
in the range �� ,�+���. The self-consistent potential � is
determined by solving Poisson’s equation

1

r2

�

�r
�r2��

�r
� = 4�e�� �d� − Zni0� . �19�

Asymptotically, for t→�, the solution approaches a station-
ary solution of Eq. �18�, ��, such that

1

2
e

d��

dr
�� − �� + e���

���

�r
= 0. �20�

By solving Eq. �20� with respect to ��, one finds

���r,�� =
������� + e���r��1/2

4��
D���

r�2�� + e���r���1/2dr�

�21�

������=4�����r ,��r2dr is the energy distribution�, which
corresponds to the SPE distribution expressed by Eqs.
�11�–�13�.

D. Results and comparison between models

Examples of initial equilibrium are now presented and
discussed, first referring to the two cases of Fig. 1, then

examining the full T̂0 dependence of the principal equilib-
rium parameters. A comparison of the self-consistent equilib-
rium configuration of the electrons after the initial charging
transient is made between the exact VP model, Eq. �1�, the
barrier method, and the drift-diffusion model �Eqs. �18� and
�19��.

In Fig. 2, the electron density is plotted, along with the
corresponding electric field: the positive charge buildup at
the ion front, Q, is �a� 12.5% and �b� 38% of the total ionic
charge eN0. Figure 3 shows the equilibrium energy distribu-
tion �e,0, to be used as the initial condition for the bulk ex-
pansion. The excellent agreement between different models
confirms the validity of the barrier method. Figure 4 shows
the asymptotic solution of Eqs. �18� and �19�, ���r ,��: the
corresponding electron density and energy distribution, plot-
ted in Figs. 2 and 3, have been calculated as ����r ,��d� and
4�����r ,��r2dr, respectively.

The dependence of the initial equilibrium on T̂0 has been
analyzed using both the barrier method and the drift-

diffusion approximation, for T̂0 varying in the range
�10−3 ,1�: the equilibrium values of Q and of the mean ki-
netic energy of the trapped electrons, E, are displayed in
Figs. 5 and 6, respectively, along with the corresponding fit
laws �obtained in Ref. �18� using the SPE model�,

Q

eN0
= F2.60��6/eT̂0

1/2� , �22�

E
3
2kBT0

= 1 − F3.35�1.86T̂0
1/2� , �23�

where F��x�=x / �1+x��1/�, and where the coefficient �6/e
in Eq. �22� provides a match with the analytical results for
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10−2. Solid lines refer to results from the ergodic
model, markers refer to results from the full VP model, and dotted
lines refer to results from the drift-diffusion model of Eqs. �18� and
�19� �in the plots, the curves obtained with the SPE model and those
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the planar case �4,5� in the limit T̂0�1. Again, an excellent
agreement is found between different calculations.

V. BULK EXPANSION

The self-consistent expansion of ions and electrons has

been investigated for a wide range of the parameter T̂0 by

solving Eqs. �15�, having used the barrier method to deter-
mine the initial equilibrium distribution of electrons. The re-
sults of the study reveal that the expansion dynamics changes
smoothly from a hydrodynamiclike regime �in which the
outer ions expand first and a rarefaction front propagates
inward� to a CE-like regime �in which all ions start expand-

ing at the same time�, when going from T̂0�1 to T̂0�1.
Nonetheless, a qualitative change in the ion energy spectrum

is observed for T̂0�0.5, marking the transition towards a CE
behavior. Following the organization of Sec. IV D, the bulk
expansion is first analyzed in detail for the two reference

cases �cases �a� and �b� henceforth�, in which �a� T̂0=7.2


10−3 and �b� T̂0=7.2
10−2, and then the dependence of

the most relevant expansion features on T̂0 is examined.
The evolution of the ion phase-space profile and of the

electron and ion densities �starting from the initial equilib-
rium of Fig. 2�, are shown in Figs. 7 and 8, respectively. In
case �a� �Figs. 7�a� and 8�a��, the ion expansion starts from
the periphery and a rarefaction front is clearly observed to
propagate inward until it reaches the center of the distribu-
tion; during the expansion, the plasma remains approxi-
mately neutral, apart from the thin double-layer at the ion
front. These features, typical of quasineutral, hydrodynamic
expansions, are lost in case �b�, in which all the ions are
promptly involved in the expansion �Fig. 7�b�� and the dis-
tribution remains non-neutral during the whole process �Fig.
8�b��. In both cases, as the ions expand, and gain kinetic
energy, the electrons cool down and the charge buildup
within the ion sphere decreases, as illustrated in Fig. 9 �case
�a�� and Fig. 10 �case �b��. Asymptotically, the expanding ion
front encloses all trapped electrons, and a ballistic regime is
reached for both species �7�. The self-consistent behavior of
the electrons strongly affects the ion dynamics and their re-
sulting energy spectrum. In fact, starting from the equation
of motion of the ions �the first of Eqs. �15��, the asymptotic
energy �� of an ion can be written as

FIG. 4. �Color online� Equilibrium distribution in the r-� phase
space, �, as obtained with the drift-diffusion model of Eqs. �18�
and �19�, for �a� T̂0=7.2
10−3 and �b� T̂0=7.2
10−2. The spatial-
energetic distribution is normalized to its maximum value �max and
isolevel curves are plotted at 10−n/2�max �where n is an integer�.
Units are normalized to the quantities indicated in parentheses.
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���r0�
Ze

=
q�r0,0�

r0
+ �

0

� 1

ri�r0,t�
�q„ri�r0,t�,t…

�t
dt , �24�

where q�r , t� is the net charge buildup enclosed by a sphere
of radius r at time t. The first term on the right-hand side of
Eq. �24� is the ion potential energy, whereas the integral term
�vanishing for a CE� accounts for the energy loss due to the
decreasing charge buildup experienced by the ions along
their trajectory. Figure 11 illustrates the evolution of the ion
energy spectrum towards its asymptotic form: in both cases,
the spectrum develops a well-defined local maximum far
from the cutoff energy. Since this feature is absent in CEs,
where the asymptotic spectrum is always monotonic �it be-
haves as �1/2 up to the cutoff energy �CE�, the maximum in

the spectrum is expected to disappear when increasing T̂0
further. This transition from nonmonotonic to monotonic ion

spectra occurs at about T̂0=0.5 �cf. Fig. 12� and marks the

transition towards a CE-like behavior. In this sense, T̂0=0.5
can be considered as a lower bound for the validity of the CE
model. The dependence of the maximum �cutoff� ion energy

�max on T̂0 is shown in Fig. 13, along with the energy value
of the local maximum in the spectrum, �peak. The behavior of
�max is accurately described by the fit law

�max = F1.43�2.28T̂0
3/4��CE, �25�

�F belongs to the same class of functions used in Eqs. �22�
and �23��, whereas �peak exhibits the power-law behavior

�peak=0.3T̂0
0.9�CE, for T̂0�0.5. These fit laws can be used to

provide useful estimates of the initial electron temperature
and, hence, of the expansion regime. This can be important
for the interpretation of experimental ion-spectrum data. In
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fact, for expansion conditions far from a CE, the nonmono-
tonic behavior of the single-cluster ion spectra could affect
the total �i.e., arising from all expanding clusters� energy
spectrum measured in experiments: in particular, it could
lead to nonmonotonic energy spectra, such as those pre-
sented in Ref. �10�, also for narrow distributions of cluster
radii.

VI. CONCLUSIONS

The results presented in the paper prove that the collision-
less expansion of spherical plasmas driven by hot electrons
can be analyzed accurately with a kinetic model that de-
scribes the electron distribution as a sequence of ergodic
equilibrium configurations. The self-consistent equilibrium
that is established after the initial, sudden expansion of the
electrons has been investigated in detail, in the frozen-ion
approximation. This equilibrium can be determined with
great accuracy by replacing the real �fast� transient with an
appropriate virtual �slow� process, finding excellent agree-
ment with reference solutions of the full VP model. This
guarantees a highly precise description of the whole process,
thus providing an effective tool for the analysis of the expan-
sion dynamics. In particular, a transition in the behavior of
the ion energy spectrum, when approaching the Coulomb-
explosion regime, has been identified, and accurate fit laws
for the general properties of the expansion, which are valid
for any value of dimensionless electron temperature �pro-
vided that relativistic effects are negligible�, have been de-
termined. These laws can furnish useful estimates for the
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interpretation of experimental data, in particular concerning
possible influences of single-cluster effects on measured ion
spectra.

Finally, the ergodic model presented here can be readily
employed to study more general physical situations, such as
expansions driven by initially non-Maxwellian electrons.
Furthermore, the model could be extended so as to include

relativistic velocities and to account for the effects of nonin-
stantaneous electron heating by ultraintense laser pulses.
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